22 research outputs found

    Deposition of fine particles over a boreal forest

    Get PDF
    Dry and wet deposition are removal mechanisms of atmospheric aerosol particles. Historically, there are very scarce scientic publications reporting experimentally determined dry deposition values for the ultra-fine size range. The physics of deposition is studied both using micrometeorological field measurements conducted at SMEAR II site in Hyytiälä, Southern Finland and by modeling approaches. Dry deposition velocity depends mainly on particle size and magnitude of the atmospheric surface layer turbulence. We present experimentally determined dry deposition velocity (vd) as a function of particle size for the ultra- fine aerosol size range (10 - 150 nm) using relaxed eddy accumulation and eddy-covariance (EC) methods accompanied by particle number size distribution measurements. The highest vd was found for 10 nm particles and in all size classes vd increased with increasing friction velocity. By combining two-layer (above and sub-canopy) EC measurements and a new multi-layer canopy deposition model, we addressed how dry deposition is distributed within the forest canopy and between the canopy and the underlying ground. According to the measurements, about 20 - 30 % of particles penetrated the canopy and deposited on the forest floor. The model results showed that turbophoresis, when accounted for at the leaf scale in vertically resolved models, could increase vd for 0.1 - 2 nm particles and explain why the observations over forests generally do not support the pronounced minimum of deposition velocity for particles of that size. The developed multi-layer model was further used to study the effect of canopy structure (leaf-area shape and density) on vd. Scavenging coefficients for rain and snow deposition were calculated based on measurements of particle size distribution and precipitation. Parameterizations for both rain and snow wet deposition were derived for example to be applied in air quality and global models. Also a model including both in-cloud and below cloud wet deposition was developed and compared to the field measurements. Both snow and rain scavenging efficiency increased with increasing precipitation intensity. We also found, that the effectiveness of snow scavenging depends on the crystal or snow flake structure and the air relative humidity. Wet deposition was found to be an order of magnitude more effective "air cleaner" compared to dry deposition.Tutkimuksessa selvitettiin sekä kokeellisten ja teoreettisten menetelmien avulla pienhiukkasten märkä- ja kuivalaskeumaa boreaaliseen metsään

    High-resolution large-eddy simulation of indoor turbulence and its effect on airborne transmission of respiratory pathogens - Model validation and infection probability analysis

    Get PDF
    High-resolution large-eddy simulation (LES) is exploited to study indoor air turbulence and its effect on the dispersion of respiratory virus-laden aerosols and subsequent transmission risks. The LES modeling is carried out with unprecedented accuracy and subsequent analysis with novel mathematical robustness. To substantiate the physical relevance of the LES model under realistic ventilation conditions, a set of experimental aerosol concentration measurements are carried out, and their results are used to successfully validate the LES model results. The obtained LES dispersion results are subjected to pathogen exposure and infection probability analysis in accordance with the Wells-Riley model, which is here mathematically extended to rely on LES-based space- and time-dependent concentration fields. The methodology is applied to assess two dissimilar approaches to reduce transmission risks: a strategy to augment the indoor ventilation capacity with portable air purifiers and a strategy to utilize partitioning by exploiting portable space dividers. The LES results show that use of air purifiers leads to greater reduction in absolute risks compared to the analytical Wells-Riley model, which fails to predict the original risk level. However, the two models do agree on the relative risk reduction. The spatial partitioning strategy is demonstrated to have an undesirable effect when employed without other measures, but may yield desirable outcomes with targeted air purifier units. The study highlights the importance of employing accurate indoor turbulence modeling when evaluating different risk-reduction strategies

    Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution : Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure

    Get PDF
    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but withmuch lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/ intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups.Peer reviewe

    Peat macropore networks – new insights into episodic and hotspot methane emission

    Get PDF
    Peatlands are important natural sources of atmospheric methane (CH4) emissions. The production and emission of CH4 are strongly influenced by the diffusion of oxygen into the soil and of CH4 from the soil to the atmosphere, respectively. This diffusion, in turn, is controlled by the structure of macropore networks. The characterization of peat pore structure and connectivity through complex network theory approaches can give conceptual insight into how the relationship between the microscale pore space properties and CH4 emissions on a macroscopic scale is shaped. The evolution of the pore space that is connected to the atmosphere can also be conceptualized through a pore network modeling approach. Pore regions isolated from the atmosphere may further develop into anaerobic pockets, which are local hotspots of CH4 production in unsaturated peat. In this study, we extracted interconnecting macropore networks from three-dimensional X-ray micro-computed tomography (µCT) images of peat samples and evaluated local and global connectivity metrics for the networks. We also simulated the water retention characteristics of the peat samples using a pore network modeling approach and compared the simulation results with measured water retention characteristics. The results showed large differences in peat macropore structure and pore network connectivity between vertical soil layers. The macropore space was more connected and the flow paths through the peat matrix were less tortuous near the soil surface than at deeper depths. In addition, macroporosity, structural anisotropy, and average pore throat diameter decreased with depth. Narrower and more winding air-filled diffusion channels may reduce the rate of gas transport as the distance from the peat layer to the soil–air interface increases. The network analysis also suggests that both local and global network connectivity metrics, such as the network average clustering coefficient and closeness centrality, might serve as proxies for assessing the efficiency of gas diffusion in air-filled pore networks. However, the applicability of the network metrics was restricted to the high-porosity near-surface layer. The spatial extent and continuity of the pore network and the spatial distribution of the pores may be reflected in different network metrics in contrasting ways. The hysteresis of peat water content between wetting and drying was found to affect the evolution of the volume of connected air-filled pore space in unsaturated peat. Thus, the formation of anaerobic pockets may occur in a smaller soil volume and methanogenesis may be slower when the peat is wetting compared to in drying conditions. This hysteretic behavior might explain the hotspots and episodic spikes of CH4 emissions, and therefore, it should be taken into account in biogeochemical models.Peer reviewe

    Does growing atmospheric CO2 explain increasing carbon sink in a boreal coniferous forest?

    Get PDF
    The terrestrial net ecosystem productivity (NEP) has increased during the past three decades, but the mechanisms responsible are still unclear. We analyzed 17 years (2001-2017) of eddy-covariance measurements of NEP, evapotranspiration (ET) and light and water use efficiency from a boreal coniferous forest in Southern Finland for trends and inter-annual variability (IAV). The forest was a mean annual carbon sink (252 [+/- 42] gC m-2a-1), and NEP increased at rate +6.4-7.0 gC m-2a-1 (or ca. +2.5% a-1) during the period. This was attributed to the increasing gross-primary productivity GPP and occurred without detectable change in ET. The start of annual carbon uptake period was advanced by 0.7 d a-1, and increase in GPP and NEP outside the main growing season contributed ca. one-third and one-fourth of the annual trend, respectively. Meteorological factors were responsible for the IAV of fluxes but did not explain the long-term trends. The growing season GPP trend was strongest in ample light during the peak growing season. Using a multi-layer ecosystem model, we showed that direct CO2 fertilization effect diminishes when moving from leaf to ecosystem, and only 30-40% of the observed ecosystem GPP increase could be attributed to CO2. The increasing trend in leaf-area index (LAI), stimulated by forest thinning in 2002, was the main driver of the enhanced GPP and NEP of the mid-rotation managed forest. It also compensated for the decrease of mean leaf stomatal conductance with increasing CO2 and LAI, explaining the apparent proportionality between observed GPP and CO2 trends. The results emphasize that attributing trends to their physical and physiological drivers is challenged by strong IAV, and uncertainty of LAI and species composition changes due to the dynamic flux footprint. The results enlighten the underlying mechanisms responsible for the increasing terrestrial carbon uptake in the boreal zone.Peer reviewe
    corecore